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Abstract: The content of this paper is intended to highlight the performance of the 32-bit LEON 3FT processor 

in terms of execution speed in comparison with the currently used 16-bit processor. Therefore, the work related 

to this paper is considered to be an upgrade over the previous implementation. The proposal for such an 

enhancement has been materialized successfully by means of a LEON 3FT processor based design on a 

protoboard, extensively supported by suitable simulator and debugger tools and environment. A set of selected 

benchmark programs have been executed on the superior processor mainly to track the execution times. The 

benchmark suite is selected in order to suit, support and verify the functionality of the possible list of real-time 

tasks in the spacecraft application. Taking advantage of this enhancement, the end user can time critical, real-

time tasks efficiently. The results of this paper show a remarkable giant leap in system performance in terms of 

execution speed. 

Index Terms: LEON 3FT, performance analysis, benchmark programs, computational capabilities, execution 

speed 

 

I. Introduction 
It is evident that the developments in the field of processors and technology are enormous. There is 

advancement towards miniaturization, performance and operation control of the processors being used in real-

time systems. Keeping in mind the possible drawbacks of the current processors being used, a designer often 

looks out for much more superior processors, processors whose performance can rule its predecessors. In an 

similar attempt to implement a much better processor in the design of CPU for spacecraft systems, this paper 

proposes to implement a 32-bit LEON 3FT processor in competition with the previous 16-bit MIL-STD-1750 

based processor, which is becoming nearly obsolete. The overall performance of the spacecraft is expected to 

take a leap, by utilizing the extended features of the 32-bit processor. One can expect a leap in execution speed, 

throughput, and better power saving features, enhanced data handling capability and an appreciable reduction in 

chip size and hence weight. There is definitely a need for such an enhancement. Section II highlights the 

features of the 32-bit processor, which provide extensive support to the design being implemented later in 

Section IV. The primary objective of the design is upgrade and modernization of the existing CPU design of 

spacecraft applications. 

A detailed discussion about the factors influencing the performance of a system is taken care of in Section 

III. Section V discloses the test environment followed by the test results in Section VI. There is a mention of the 

conclusion of this paper and a proposal to continue future work in the field of Fault tolerance, Pipeline, Caching, 

Interrupt Handling and Memory Interfacing supported by Worst-Case Execution time (WCET) analysis. 

 

II.    Insight Into The Leon 3ft Processor 
The LEON family of processors was originally designed by the European Space Research and Technology 

Centre (ESTEC), under the European Space Agency (ESA), in the year 1997, but was later handed out to Gaisler 

Research (Aeroflex Gaisler), which is suitable for system-on-a-chip (SoC) designs. However, the fault tolerant 

version of LEON, the LEON 3FT aims at providing supports to work in harsh, highly variant space 

environments. The LEON 3FT is a monolithic, SPARC V8 processor which follows the RISC based Harvard 

architecture and projects a 7-stage instruction pipeline with a predominant fault-tolerant feature. Full access to 

all processor registers and cache memory is provided through the debug support unit (DSU). User can set 

instruction breakpoints and perform single stepping through the DSU. The DSU acts as an AHB slave and can 

be accessed by any one of the following AHB
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Figure 1 – Functional Block Diagram of LEON 3FT processor

masters: the debug UART, the JTAG port, the PCI port, or a Space Wire link using RMAP. A block diagram of 

LEON3 architecture is shown in Figure 1.   

 

III.     Performance Analysis 
With the advent of a new, superior processor being brought into the spacecraft application, it becomes a 

mandatory exercise to analyse the processor's performance in terms of clock cycles for instruction execution as 

well as the overall execution time. Reducing or simplifying the instruction set is not the goal of any architectural 

modification. Instead, each of the architectures ultimately aims at the IMPROVEMENT OF OVERALL SYSTEM 

PERFORMANCE. We, in this paper have made an attempt to highlight the fact that the RISC supported LEON 

3FT processor is a better performer when compared to the CISC supported MA 31750. The performance of a 

processor is defined by the time requires by the processor to complete a specific task, task may be a program, an 

algorithm or a benchmark. The three factors determining the performance of a processor are related as: 

 

Performance or Time per task = C * T * I 

where C - Cycles per instructions, T - Time per cycle and   I - Instruction per Task. It is evident from the above 

relationship that reducing any of these three factors improves the performance of the system. CISC systems tend 

to reduce the „I‟ factor in order to reduce the Timer per Task whereas RISC designs reduce the „C‟ and „I‟ factors 

effectively to enhance system performance.  

 

A. Time per Instruction (CT) - The „C‟ and 'T' factors are complementary i.e. the product of 'C' and 'T' yield the 

Time per Instruction factor. If 'T' is reduced (increasing clock speed), the time for one cycle reduces which in 

turn reduces the amount of work that can be accomplished in a single cycle. In most of the processors, the 

designer is not very much concerned whether it is a matter of faster clock rates (short cycle times) and more 

instruction cycles or slower clock rates (longer cycle times) and fewer instruction cycles – it is the total Time per 

Instruction that is more important. The execution time shoots up as the number of cycles increase.  

 

B. Cycles per Instruction (C) - The strength of RISC processors lies in reduction of cycles per instruction and 

Time per Cycle. RISC design incorporates the “Pipeline” feature to reduce the 'C' factor by a factor equal to the 

depth of the pipeline. While pipeline can improve the execution speed a program, there might also arise some 

problems. All the stages of a pipeline process may not take the same time slice to execute. This makes it much 

harder to synchronise the various stages of the different instructions. Also, some instructions may even depend 

on the results of some earlier instructions. The pipeline on the MA 31750 always holds two 16-bit words. On the 

other hand, the LEON 3FT integer unit uses a single instruction issue pipeline with seven stages with the 

Harvard architecture implementation. The stages are FE (Instruction Fetch), DE (Decode), RA (Register 

Access), EX (Execute), ME (Memory), XC (Exception) and WR (Write).  

 

C. Time per Cycle (T) - The time required to perform a machine cycle (factor 'T') is determined by instruction 

decode time, instruction operation time, instruction access time and architectural simplicity. 

 

D. Instructions per Task (I) – For RISC designs, the „I‟ factor is a major disadvantage among the C, T and I 

factors. A possible set of solutions is being provided in RISC designs to reduce the number of instructions per 

task. Solutions include optimization of compilers and operating system 
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support. It is possible to make extremely fast memory but this is only practical for small amounts of memory for 

cost, power and signal routing reasons. The solution is to provide a small amount of very fast memory known as 

a CPU cache which holds recently accessed data. Cache memories were not used much in space applications 

due to the problems of calculating the WCET in hard real-time systems. To increase the performance and reduce 

power consumption, it is however necessary to use on-chip cache memories and also monitoring the WCET. The 

paper [2] briefing the “Prototype Execution-time Analyser for LEON” (PEAL) project funded by ESA/ESTEC 

and executed in 2006 clearly states that a cache-equipped processor puts forward the below factors which may 

affect the execution time in real-time. (a) The total size of the program code and data in relation to the cache 

size, (b) location of the program code and data, (c) history of code and data addresses accessed by the program 

in the past, and (d) interrupts and pre-emptions occurred during program execution.  

The LEON cache memory is implemented as a separate instruction and data cache.  Apart from some of the 

crudest methods to find a solution like disabling caches or by using caches fully and freely, systematic methods 

yielding safe upper bound on the WCET were proposed. Some of the methods are (i) static cache-aware WCET 

analysis [3, 4]; and (ii) measurement-based WCET analysis [5, 6] with some systematic way to specify and 

measure the test coverage to ensure a sufficiently reliable result.  

 

IV.    Hardware Implementation 
The design of the CPU system for spacecraft applications is implemented on a protoboard, the four 

major modules of the protoboard being the I/O & Power Supplies, Processor, 1553 communication and 

Memories. The features of the then proposed design were as follows: (1) Usage of high density EEPROMs for 

software storage and minimal PROM for Boot Code. (2) Boot code can perform EEPROM update by 

telecommands in addition to BOOT functions. (3) Program execution from SRAM for faster execution, 

EEPROM being slow and more susceptible to upsets. (4)16 bit level translators to interface to external +5V I/O 

bus – to achieve +3.3 V for I/O & +2.5 V for core. (5) RAM-transceiver-arbitration logic integrated - Mil 1553B 

controller. (6) Software tool set that supports both Ada & C (cross-compilation). 

The design implementation diagram is shown below in Figure 2 followed by a brief explanation.  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Design Implementation Diagram 

 

a) Bus - The external memory address bus is 28-bit wide whereas the data bus is 32- bit wide with 8 check bits 

(6 CBs in MA 31750). The control bus comprises of dedicated chip select, read and write signals for various 

memory blocks. 
 

b) Memory – Memory Controller acts as the interface between memory (PROM, EEPROM and SRAM) and the 

AHB bus. Requirement is 32K × 32 of boot PROM, 512K × 32 of EEPROM & 1.5M × 32 of SRAM and all 

three can be EDAC protected using (39, 7) BCH code, nevertheless, PROM does not require EDAC 

implementation. PROM is 3.3V operated. It is slower than SRAM and has the boot program residing on it.  We 
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observe that even though the OBC PROM requirement is only 32K × 32, the configuration is 32K × 40, since 

EEPROM requires additional 8 bits (512K × 40) for implementing the EDAC logic and both EEPROM & 

PROM share the same memory bank with respect to the processor; we extend a common configuration of 40 for 

both PROM & EEPROM. EEPROM is slowest & more vulnerable to disturbances. Therefore, there arises a 

need to load the program from EEPROM to SRAM. One can interface up to 1GB SRAM externally through the 

Memory Controller. The SRAM area is divided into five RAM banks and the size of each bank can be set as 

varying from 8Kbyte to 256 Mbyte through the MCFG2 configuration register. A SRAM read constitutes two 

data cycles and 0-3 wait states. 

PROM is fabricated with QML-qualified radiation-hardened technology and is designed for use in systems 

operating in radiation environments. PROM operates over the full military temperature range, requires a single 

3.3 V ± 5% power supply, and is available with TTL-compatible I/O. Power consumption is typically 

15mW/MHz in operation and is less than 10mW/MHz in the low power- enabled mode. The PROM operation is 

fully asynchronous, with access time < 60 ns. 

 

c) Level Translators – 5V to 3.3V translators are implemented using 54LVTH162244. On the other hand, 5V to 

3.3V and vice versa translations are implemented using 54AC164245. 

 

d) Power on Reset Generation & Power Sequencing - The first start-up is the I/O (requiring 3.3V) and next is 

the Core (requiring 2.5V). Proper power sequencing of the processor is achieved by bringing up VDD to its 

recommended minimum operating voltage of 3.0V, and then delaying tVCD clock cycles before bringing up the 

VDDC supply. If power is applied to the VDDC supply pins while VDD is less than 3.0V, excessive current or 

damage to the device could occur. Power sequencing is needed when various types of electronic equipment must 

be powered up or down in groups, rather than all simultaneously. The design was proposed to implement 

suitable delays using RC based circuits. The delay values in the design for I/O, core signals and the RESET 

signals in this design are 10ms, 15ms and 25ms. 

 

e) Clock – The 16-bit processor competed with a frequency of 12 MHz, the current 32-bit processor promising     

a theoretical capability of nearly 48 MHz But, at higher frequencies, power consumption increases and also, 

board design is complex. So, a maximum frequency of operation of 32MHz is chosen. 

 

f) Low Dropout Regulators - Low dropout regulators are used to provide regulated voltages to I/O and the core 

of the processor. LDOs improve transient response. The advantages of a low dropout voltage include a lower 

minimum operating voltage, higher efficiency operation and lower heat dissipation. LDO regulator is a DC 

linear voltage regulator which can operate with a very small input–output differential voltage and provides 

output voltages of 1.5V, 1.8V, 2.5V & 3.3V with 1.21V reference voltage. The only disadvantage of LDOs is 

their weight. Normal regulators cannot be used.  

 

g) 1553B Protocol communication –1553B is used for intra subsystem communication as well as to 

communicate with the external world. Shared RAM & arbitrary logic are both required, but not as a separate 

implementation in a FPGA because the DDC device which has in-built shared RAM & arbitrary logic is used. 

This reduces cost, production time & size, hence, weight.  

 

V.  Test Environment 
This section intends to provide a brief description of the various tool sets and utilities as well as the 

development environment in which the tests related to this paper were carried out. All tests were carried out on 

the LEON 3FT core, SPARC V8 compatible processor. The compilation and simulation support is provided by 

GNAT Pro from AdaCore. GNAT Pro is a compiler and software development tool set for Ada programming 

language in a cross- compilation environment. By default, it assumes Ada 95 however it may be implemented in 

ADA 83/2005/2012 as well. All testing tools are installed on a LINUX workstation; GRMON is a general debug 

monitor for the LEON processor, and for SOC designs based on the GRLIB IP library. The monitor connects to 

a dedicated debug interface on the target hardware, through which it can perform read and write cycles on the 

on-chip bus (AHB).  

The debug interface can be of various types: the LEON2 processor supports debugging over a serial UART 

and 32-bit PCI, while LEON3 also supports JTAG, Ethernet and SpaceWire (using the GRESB Ethernet to 

SpaceWire bridge) debug interfaces. On the target system, all debug interfaces are realized as AHB masters with 

the debug protocol implemented in hardware. GRMON can operate in two modes: command-line mode and 

GDB mode. In command-line mode, GRMON commands are entered manually through a terminal window. In 

GDB mode, GRMON acts as a GDB gateway and translates the GDB extended-remote protocol to debug 

commands on the target system. In our test setup, GDB gateway has been utilized. The test set up is represented 

http://en.wikipedia.org/wiki/Linear_regulator
http://en.wikipedia.org/wiki/Voltage
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diagrammatically as in Figure 3. 
                                                                                                                      

                               
 

       

Figure 3 – Test Setup 
 

ADA codes get executed in the same environment. The compiler and debugger actions are carried out using 

the following set of commands. Command for Target initialization to establish connectivity between GRMON 

and the processor is mentioned below.  

grmon –gdb  
The programmer is expected to obtain the dump file using the command: 

leon3-elf-objdump -d filename | tee filename.dump 

Attaching to GDB and debugging through the GDB protocol and code execution: 

leon3-elf-gdb filename 

target remote: portaddress,  

load filename 

continue 
     The dump file reveals the generated assembly level code from which one can calculate the total execution 

time of a specific computer program. The compile, link and fuse files were loaded on to the proto board with the 

help of a debug monitor tool – GRMON. This tool controls the program execution  

 
Screenshot 1 

on the proto board for LEON processors. GRMON communicates with the LEON processor through a gateway 

section, the non-intrusive debug support unit (DSU) of the LEON system. The GRMON architecture shows the 

command layer as an integration of both Basic commands and GDB protocol. This facilitates the programmer 

with two ways to provide inputs to GRMON. User can either provide a set of GRMON commands from the 

terminal or remotely connect to the GNU debugger. Screenshot 1 depicts the target connectivity using GRMON.  

 

VI.    Results Of The Practical Benchmark Test Suite 
  We understand that the results of the entire set-up can be obtained when a related software code runs 

and executes fine on the hardware support established. The current space application certifies the workability of 

the protoboard after executing a predefined benchmark ADA code on it. The ADA code, in itself contains all 

vital space application logics. As discussed before, GRMON debug monitor supports the system by loading this 

ADA code on to the processor residing on the protoboard. Prior to the implementation of the 32-bit LEON 3FT 

processor, the same ADA code was even executed on the previously used 16-bit MA 31750 processor. 

For the purpose of simplicity, logics covering quaternion multiplication and norm calculations were only 

executed instead of the entire program module and a main program calls these logics. The logics may also be 

PC running GRMON 

 

 

Protoboard containing LEON 3FT processor 

RS232 cable UART interface 
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called within multiple looping constructs for the purpose of testing complex looping times. This main program 

is a simple toggle generating code, henceforth one can expect to see the output in the form of a periodic square 

wave on the CRO. Either the positive pulse width (Ton) or the negative pulse width (Toff) is the execution time 

.The same logics were executed on the new test bed to obtain comparative readings. With an objective to 

tabulate a fine set of readings for many more computational logics that may possibly be used in the spacecraft 

application, we intend to propose to execute each of the logics as separate entities and note the execution time 

and the possible number of instruction cycles consumed by each of the functions when executed on the LEON 

3FT processor. The tabulation of readings is displayed in Table 1. 

 
Table 1 

Function Description Execution Time 

(in µs) 

Number of cycles (24 MHz 

clock) 

fQMult Quaternion Multiplication 15.2 ≈ 365 

fLSqrt Square root of number of type Quaternion 6.8 ≈ 164 

rQNorm Norm value of number of type Quaternion 19.5 ≈ 468 

bopr1 Bit Operations 2.35 ≈ 57 

rMem_Cp1 Copy source and destination address 2.27 ≈ 55 

rRead_In_Ports Read data from multiple input ports with additional 

data handling/manipulation logic 
2.31 ≈ 56 

Arith Basic mathematical operations on arithmetic values 5.2 ≈ 125 

flt_pnt_oper Basic mathematical operations on floating-point 

values 
5.33 ≈ 128 

 

The execution time then recorded was 1.7ms and now a tremendous dip of just 80µs, which indeed is a very 

significant performance elevation in terms of execution speed. The same has been depicted in the form of a bar 

graph, Figure 4 to enhance the visual understanding of the readings taken. 

 
 

VII.      Conclusion & Future Work 
In this paper, the design and implementation of CPU for spacecraft applications using a 32-bit processor is 

presented. It is basically an enhancement over the existing design which implements a 16-bit processor for 

operation. The superseding processor indeed advertises an enhancement in terms of execution speed, operation 

in HiRel environments, fault tolerance, multiple options for external communication, power and timing 

constraints, size and hence weight and many more. But, the scope of this paper mainly revolves around the 

execution speed. The successful workability of the protoboard bearing our design is verified by the benchmark 

suite. A remarkable leap in execution speed has been achieved with the LEON 3FT compatible superior 

processor. LEON 3FT processors have already joined the league of super processors. The reduction in chip size 

and a  53 MIPS throughput via 66 MHz base clock frequency (as of LEON 3FT) as against a 1.5 MIPS 

throughput via a 12 MHz base clock frequency (as of MA 31750)  are also added advantages of using the 32-bit 

processor. Nevertheless, few of the negativities of LEON 3FT have been brought to light and worked upon for 

betterment in LEON4. Efforts have been made to overcome some of the limitations of this processor in the next 

version of LEON namely LEON4 processor. LEON4 improvements [7] over the LEON3 processor include 

Branch Prediction, 64-bit pipeline with single cycle load/store and 128-bit wide L1 cache. Due to the 128-bit 

wider AHB bus and single cycle load and store instructions, there is a relatively 4x performance increase in 

terms of cache line fills. 

Most on-board software is subject to real-time deadlines, so that the important figure is not (only) the 

average execution time, but the WCET or, in practice, a trustworthy upper bound or estimate of the WCET. But, 

the multiple-stage pipeline architecture, independent data and instruction caches and a memory management 

unit for the shared memory make a timing analysis difficult. Therefore, one can possibly go ahead with the 

WCET analysis of the current application to fulfil real-time deadlines. On the other hand, the LEON 3FT 
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features like Fault tolerance, 7-stage Pipeline, Caching, Interrupt Handling and Memory Interfacing can be 

explored and demonstrated with small code snippets. A detailed analysis of the above features will definitely 

highlight the superiority of the 32-bit processor we have implemented in this application. 
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